ISSN 2231-5756

INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT & MANAGEMENT

A Monthly Double-Blind Peer Reviewed (Refereed/Juried) Open Access International e-Journal - Included in the International Serial Directories Indexed & Listed at:

Ulrich's Periodicals Directory ©, ProQuest, U.S.A., Cabell's Directories of Publishing Opportunities, U.S.A., Google Scholar, Indian Citation Index (ICI), I-Gage, India [link of the same is duly available at Inflibnet of University Grants Commission (U.G.C.)], Index Copernicus Publishers Panel, Poland with IC Value of 5.09 (2012) & number of libraries all around the world. Circulated all over the world & Google has verified that scholars of more than **7835 Cities** in **197 countries/territories** are visiting our journal on regular basis. Ground Floor, Building No. 1041-C-1, Devi Bhawan Bazar, JAGADHRI – 135 003, Yamunanagar, Haryana, INDIA

CONTENTS

Sr. No.	TITLE & NAME OF THE AUTHOR (S)	Page No.
1.	AGENETICALGORITHMBASEDIMAGEAUTHENTICATIONTECHNIQUEINFREQUENCYDOMAINUSINGHAARWAVELETTRANSFORM(AGAIAFDHWT)Dr. AMRITA KHAMRUI	1
2.	QUANTIFYING THE EXPLAINABILITY OF MACHINE LEARNING MODELS: METRICS AND BENCHMARKS K.ROOPA	6
	REQUEST FOR FEEDBACK & DISCLAIMER	11

INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT & MANAGEMENT A Monthly Double-Blind Peer Reviewed (Refereed/Juried) Open Access International e-Journal - Included in the International Serial Directories http://ijrcm.org.in/

<u>FOUNDER PATRON</u>

Late Sh. RAM BHAJAN AGGARWAL

Former State Minister for Home & Tourism, Government of Haryana Former Vice-President, Dadri Education Society, Charkhi Dadri Former President, Chinar Syntex Ltd. (Textile Mills), Bhiwani

CO-ORDINATOR

Dr. BHAVET

Former Faculty, Shree Ram Institute of Engineering & Technology, Urjani

<u>ADVISOR</u>

Prof. S. L. MAHANDRU

Principal (Retd.), Maharaja Agrasen College, Jagadhri

<u>EDITOR</u>

Dr. G. BRINDHA

Professor & Head, Dr.M.G.R. Educational & Research Institute (Deemed to be University), Chennai

CO-EDITOR

Dr. A. SASI KUMAR

Professor, Vels Institute of Science, Technology & Advanced Studies (Deemed to be University), Pallavaram

EDITORIAL ADVISORY BOARD

Dr. S. P. TIWARI

Head, Department of Economics & Rural Development, Dr. Ram Manohar Lohia Avadh University, Faizabad Dr. CHRISTIAN EHIOBUCHE

Professor of Global Business/Management, Larry L Luing School of Business, Berkeley College, USA

Dr. SIKANDER KUMAR

Vice Chancellor, Himachal Pradesh University, Shimla, Himachal Pradesh

Dr. JOSÉ G. VARGAS-HERNÁNDEZ

Research Professor, University Center for Economic & Managerial Sciences, University of Guadalajara, Guadala-

jara, Mexico

Dr. TEGUH WIDODO

Dean, Faculty of Applied Science, Telkom University, Bandung Technoplex, Jl. Telekomunikasi, Indonesia

Dr. M. S. SENAM RAJU

Professor, School of Management Studies, I.G.N.O.U., New Delhi

Dr. A SAJEEVAN RAO

Professor & Director, Accurate Institute of Advanced Management, Greater Noida

Dr. D. S. CHAUBEY

Professor & Dean (Research & Studies), Uttaranchal University, Dehradun

Dr. CLIFFORD OBIYO OFURUM

Professor of Accounting & Finance, Faculty of Management Sciences, University of Port Harcourt, Nigeria

Dr. KAUP MOHAMED

Dean & Managing Director, London American City College/ICBEST, United Arab Emirates

Dr. VIRENDRA KUMAR SHRIVASTAVA

Director, Asia Pacific Institute of Information Technology, Panipat

Dr. MIKE AMUHAYA IRAVO

Principal, Jomo Kenyatta University of Agriculture & Tech., Westlands Campus, Nairobi-Kenya

Dr. SYED TABASSUM SULTANA

Principal, Matrusri Institute of Post Graduate Studies, Hyderabad

Dr. BOYINA RUPINI

Director, School of ITS, Indira Gandhi National Open University, New Delhi

Dr. NEPOMUCENO TIU

Chief Librarian & Professor, Lyceum of the Philippines University, Laguna, Philippines

INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT & MANAGEMENT

A Monthly Double-Blind Peer Reviewed (Refereed/Juried) Open Access International e-Journal - Included in the International Serial Directories http://ijrcm.org.in/

Dr. SANJIV MITTAL Professor & Dean, University School of Management Studies, GGS Indraprastha University, Delhi **Dr. RAJENDER GUPTA** Convener, Board of Studies in Economics, University of Jammu, Jammu **Dr. SHIB SHANKAR ROY** Professor, Department of Marketing, University of Rajshahi, Rajshahi, Bangladesh Dr. SRINIVAS MADISHETTI Professor, School of Business, Mzumbe University, Tanzania **Dr. NAWAB ALI KHAN** Professor & Dean, Faculty of Commerce, Aligarh Muslim University, Aligarh, U.P. **MUDENDA COLLINS** Head, Operations & Supply Chain, School of Business, The Copperbelt University, Zambia **Dr. EGWAKHE A. JOHNSON** Professor & Director, Babcock Centre for Executive Development, Babcock University, Nigeria **Dr. A. SURYANARAYANA** Professor, Department of Business Management, Osmania University, Hyderabad P. SARVAHARANA Asst. Registrar, Indian Institute of Technology (IIT), Madras **Dr. MURAT DARCIN** Associate Dean, Gendarmerie and Coast Guard Academy, Ankara, Turkey Dr. ABHAY BANSAL Head, Department of Information Technology, Amity School of Engg. & Tech., Amity University, Noida **Dr. YOUNOS VAKIL ALROAIA** Head of International Center, DOS in Management, Semnan Branch, Islamic Azad University, Semnan, Iran WILLIAM NKOMO Asst. Head of the Department, Faculty of Computing, Botho University, Francistown, Botswana **Dr. JAYASHREE SHANTARAM PATIL (DAKE)** Faculty in Economics, KPB Hinduja College of Commerce, Mumbai SHASHI KHURANA Associate Professor, S. M. S. Khalsa Lubana Girls College, Barara, Ambala **Dr. SEOW TA WEEA** Associate Professor, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia Dr. OKAN VELI ŞAFAKLI Professor & Dean, European University of Lefke, Lefke, Cyprus Dr. MOHENDER KUMAR GUPTA Associate Professor, Government College, Hodal **Dr. BORIS MILOVIC** Associate Professor, Faculty of Sport, Union Nikola Tesla University, Belgrade, Serbia **Dr. LALIT KUMAR** Course Director, Faculty of Financial Management, Haryana Institute of Public Administration, Gurugram Dr. MOHAMMAD TALHA Associate Professor, Department of Accounting & MIS, College of Industrial Management, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia Dr. V. SELVAM Associate Professor, SSL, VIT University, Vellore **Dr. IQBAL THONSE HAWALDAR** Associate Professor, College of Business Administration, Kingdom University, Bahrain **Dr. PARDEEP AHLAWAT** Associate Professor, Institute of Management Studies & Research, Maharshi Dayanand University, Rohtak **Dr. ALEXANDER MOSESOV**

Associate Professor, Kazakh-British Technical University (KBTU), Almaty, Kazakhstan

INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT & MANAGEMENT

A Monthly Double-Blind Peer Reviewed (Refereed/Juried) Open Access International e-Journal - Included in the International Serial Directories http://ijrcm.org.in/

Dr. ASHOK KUMAR CHAUHAN

Reader, Department of Economics, Kurukshetra University, Kurukshetra

Dr. BHAVET

Former Faculty, Shree Ram Institute of Engineering & Technology, Urjani

YU-BING WANG

Faculty, department of Marketing, Feng Chia University, Taichung, Taiwan

SURJEET SINGH

Faculty, Department of Computer Science, G. M. N. (P.G.) College, Ambala Cantt.

Dr. TITUS AMODU UMORU

Professor, Kwara State University, Kwara State, Nigeria

Dr. RAJESH MODI

Faculty, Yanbu Industrial College, Kingdom of Saudi Arabia

Dr. SAMBHAVNA

Faculty, I.I.T.M., Delhi

Dr. THAMPOE MANAGALESWARAN

Faculty, Vavuniya Campus, University of Jaffna, Sri Lanka

Dr. SHIVAKUMAR DEENE

Faculty, Dept. of Commerce, School of Business Studies, Central University of Karnataka, Gulbarga

SURAJ GAUDEL

BBA Program Coordinator, LA GRANDEE International College, Simalchaur - 8, Pokhara, Nepal

FORMER TECHNICAL ADVISOR

AMITA

FINANCIAL ADVISOR

NEENA Investment Consultant, Chambaghat, Solan, Himachal Pradesh

<u>LEGAL ADVISORS</u>

JITENDER S. CHAHAL Advocate, Punjab & Haryana High Court, Chandigarh U.T. CHANDER BHUSHAN SHARMA Advocate & Consultant, District Courts, Yamunanagar at Jagadhri

SUPERINTENDENT

SURENDER KUMAR POONIA

INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT & MANAGEMENT A Monthly Double-Blind Peer Reviewed (Refereed/Juried) Open Access International e-Journal - Included in the International Serial Directories http://ijrcm.org.in/

DATED: _____

CALL FOR MANUSCRIPTS

We invite unpublished novel, original, empirical and high quality research work pertaining to the recent developments & practices in the areas of Computer Science & Applications; Commerce; Business; Finance; Marketing; Human Resource Management; General Management; Banking; Economics; Tourism Administration & Management; Education; Law; Library & Information Science; Defence & Strategic Studies; Electronic Science; Corporate Governance; Industrial Relations; and emerging paradigms in allied subjects like Accounting; Accounting Information Systems; Accounting Theory & Practice; Auditing; Behavioral Accounting; Behavioral Economics; Corporate Finance; Cost Accounting; Econometrics; Economic Development; Economic History; Financial Institutions & Markets; Financial Services; Fiscal Policy; Government & Non Profit Accounting; Industrial Organization; International Economics & Trade; International Finance; Macro Economics; Micro Economics; Rural Economics; Co-operation; Demography: Development Planning; Development Studies; Applied Economics; Development Economics; Business Economics; Monetary Policy; Public Policy Economics; Real Estate; Regional Economics; Political Science; Continuing Education; Labour Welfare; Philosophy; Psychology; Sociology; Tax Accounting; Advertising & Promotion Management; Management Information Systems (MIS); Business Law; Public Responsibility & Ethics; Communication; Direct Marketing; E-Commerce; Global Business; Health Care Administration; Labour Relations & Human Resource Management; Marketing Research; Marketing Theory & Applications; Non-Profit Organizations; Office Administration/Management; Operations Research/Statistics; Organizational Behavior & Theory; Organizational Development; Production/Operations; International Relations; Human Rights & Duties; Public Administration; Population Studies; Purchasing/Materials Management; Retailing; Sales/Selling; Services; Small Business Entrepreneurship; Strategic Management Policy; Technology/Innovation; Tourism & Hospitality; Transportation Distribution; Algorithms; Artificial Intelligence; Compilers & Translation; Computer Aided Design (CAD); Computer Aided Manufacturing; Computer Graphics; Computer Organization & Architecture; Database Structures & Systems; Discrete Structures; Internet; Management Information Systems; Modeling & Simulation; Neural Systems/Neural Networks; Numerical Analysis/Scientific Computing; Object Oriented Programming; Operating Systems; Programming Languages; Robotics; Symbolic & Formal Logic; Web Design and emerging paradigms in allied subjects.

Anybody can submit the soft copy of unpublished novel; original; empirical and high quality research work/manuscript anytime in M.S. Word format after preparing the same as per our GUIDELINES FOR SUBMISSION; at our email address i.e. infoircm@gmail.com or online by clicking the link online submission as given on our website (FOR ONLINE SUBMISSION, CLICK HERE).

GUIDELINES FOR SUBMISSION OF MANUSCRI

COVERING LETTER FOR SUBMISSION: 1.

THE EDITOR

HRCM

Subject: SUBMISSION OF MANUSCRIPT IN THE AREA OF

(e.g. Finance/Mkt./HRM/General Mgt./Engineering/Economics/Computer/IT/ Education/Psychology/Law/Math/other, please specify)

DEAR SIR/MADAM

Please find my submission of manuscript titled ' ' for likely publication in one of your journals.

I hereby affirm that the contents of this manuscript are original. Furthermore, it has neither been published anywhere in any language fully or partly, nor it is under review for publication elsewhere.

I affirm that all the co-authors of this manuscript have seen the submitted version of the manuscript and have agreed to inclusion of their names as co-authors.

Also, if my/our manuscript is accepted, I agree to comply with the formalities as given on the website of the journal. The Journal has discretion to publish our contribution in any of its journals.

:

•

NAME OF CORRESPONDING AUTHOR

Designation/Post*		
Institution/College/University with full address & Pin Code		
Residential address with Pin Code		
Mobile Number (s) with country ISD code		
Is WhatsApp or Viber active on your above noted Mobile Number (Yes/No)		
Landline Number (s) with country ISD code		
E-mail Address		
Alternate E-mail Address		
Nationality		

* i.e. Alumnus (Male Alumni), Alumna (Female Alumni), Student, Research Scholar (M. Phil), Research Scholar (Ph. D.), JRF, Research Assistant, Assistant Lecturer, Lecturer, Senior Lecturer, Junior Assistant Professor, Assistant Professor, Senior Assistant Professor, Co-ordinator, Reader, Associate Professor, Professor, Head, Vice-Principal, Dy. Director, Principal, Director, Dean, President, Vice Chancellor, Industry Designation etc. The qualification of auth<u>or is not acceptable for the purpose</u>.

http://ijrcm.org.in/

vi

NOTES:

- a) The whole manuscript has to be in **ONE MS WORD FILE** only, which will start from the covering letter, inside the manuscript. <u>**pdf.**</u> <u>**version**</u> is liable to be rejected without any consideration.
- b) The sender is required to mention the following in the SUBJECT COLUMN of the mail:

New Manuscript for Review in the area of (e.g. Finance/Marketing/HRM/General Mgt./Engineering/Economics/Computer/IT/ Education/Psychology/Law/Math/other, please specify)

- c) There is no need to give any text in the body of the mail, except the cases where the author wishes to give any **specific message** w.r.t. to the manuscript.
- d) The total size of the file containing the manuscript is expected to be below 1000 KB.
- e) Only the **Abstract will not be considered for review** and the author is required to submit the **complete manuscript** in the first instance.
- f) The journal gives acknowledgement w.r.t. the receipt of every email within twenty-four hours and in case of non-receipt of acknowledgment from the journal, w.r.t. the submission of the manuscript, within two days of its submission, the corresponding author is required to demand for the same by sending a separate mail to the journal.
- g) The author (s) name or details should not appear anywhere on the body of the manuscript, except on the covering letter and the cover page of the manuscript, in the manner as mentioned in the guidelines.
- 2. **MANUSCRIPT TITLE**: The title of the paper should be typed in **bold letters**, **centered** and **fully capitalised**.
- 3. **AUTHOR NAME (S) & AFFILIATIONS**: Author (s) **name**, **designation**, **affiliation** (s), **address**, **mobile/landline number** (s), and **email/alternate email address** should be given underneath the title.
- 4. ACKNOWLEDGMENTS: Acknowledgements can be given to reviewers, guides, funding institutions, etc., if any.
- 5. **ABSTRACT**: Abstract should be in **fully Italic printing**, ranging between **150** to **300 words**. The abstract must be informative and elucidating the background, aims, methods, results & conclusion in a **SINGLE PARA**. *Abbreviations must be mentioned in full*.
- 6. **KEYWORDS**: Abstract must be followed by a list of keywords, subject to the maximum of **five**. These should be arranged in alphabetic order separated by commas and full stop at the end. All words of the keywords, including the first one should be in small letters, except special words e.g. name of the Countries, abbreviations etc.
- JEL CODE: Provide the appropriate Journal of Economic Literature Classification System code (s). JEL codes are available at www.aeaweb.org/econlit/jelCodes.php. However, mentioning of JEL Code is not mandatory.
- 8. MANUSCRIPT: Manuscript must be in <u>BRITISH ENGLISH</u> prepared on a standard A4 size <u>PORTRAIT SETTING PAPER</u>. It should be free from any errors i.e. grammatical, spelling or punctuation. It must be thoroughly edited at your end.
- 9. HEADINGS: All the headings must be bold-faced, aligned left and fully capitalised. Leave a blank line before each heading.
- 10. **SUB-HEADINGS**: All the sub-headings must be bold-faced, aligned left and fully capitalised.
- 11. MAIN TEXT:

THE MAIN TEXT SHOULD FOLLOW THE FOLLOWING SEQUENCE:

INTRODUCTION REVIEW OF LITERATURE NEED/IMPORTANCE OF THE STUDY STATEMENT OF THE PROBLEM OBJECTIVES HYPOTHESIS (ES) RESEARCH METHODOLOGY RESULTS & DISCUSSION FINDINGS RECOMMENDATIONS/SUGGESTIONS CONCLUSIONS LIMITATIONS SCOPE FOR FURTHER RESEARCH REFERENCES APPENDIX/ANNEXURE

The manuscript should preferably be in 2000 to 5000 WORDS, But the limits can vary depending on the nature of the manuscript.

INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT & MANAGEMENT

A Monthly Double-Blind Peer Reviewed (Refereed/Juried) Open Access International e-Journal - Included in the International Serial Directories http://ijrcm.org.in/

- 12. **FIGURES & TABLES**: These should be simple, crystal **CLEAR**, **centered**, **separately numbered** & self-explained, and the **titles must be above the table/figure**. Sources of data should be mentioned below the table/figure. It should be ensured that the tables/figures are referred to from the main text.
- 13. **EQUATIONS/FORMULAE:** These should be consecutively numbered in parenthesis, left aligned with equation/formulae number placed at the right. The equation editor provided with standard versions of Microsoft Word may be utilised. If any other equation editor is utilised, author must confirm that these equations may be viewed and edited in versions of Microsoft Office that does not have the editor.
- 14. **ACRONYMS**: These should not be used in the abstract. The use of acronyms is elsewhere is acceptable. Acronyms should be defined on its first use in each section e.g. Reserve Bank of India (RBI). Acronyms should be redefined on first use in subsequent sections.
- 15. **REFERENCES**: The list of all references should be alphabetically arranged. *The author (s) should mention only the actually utilised references in the preparation of manuscript* and they may follow Harvard Style of Referencing. Also check to ensure that everything that you are including in the reference section is duly cited in the paper. The author (s) are supposed to follow the references as per the following:
- All works cited in the text (including sources for tables and figures) should be listed alphabetically.
- Use (ed.) for one editor, and (ed.s) for multiple editors.
- When listing two or more works by one author, use --- (20xx), such as after Kohl (1997), use --- (2001), etc., in chronologically ascending order.
- Indicate (opening and closing) page numbers for articles in journals and for chapters in books.
- The title of books and journals should be in italic printing. Double quotation marks are used for titles of journal articles, book chapters, dissertations, reports, working papers, unpublished material, etc.
- For titles in a language other than English, provide an English translation in parenthesis.
- *Headers, footers, endnotes and footnotes should not be used in the document.* However, you can mention short notes to elucidate some specific point, which may be placed in number orders before the references.

PLEASE USE THE FOLLOWING FOR STYLE AND PUNCTUATION IN REFERENCES:

BOOKS

- Bowersox, Donald J., Closs, David J., (1996), "Logistical Management." Tata McGraw, Hill, New Delhi.
- Hunker, H.L. and A.J. Wright (1963), "Factors of Industrial Location in Ohio" Ohio State University, Nigeria.

CONTRIBUTIONS TO BOOKS

• Sharma T., Kwatra, G. (2008) Effectiveness of Social Advertising: A Study of Selected Campaigns, Corporate Social Responsibility, Edited by David Crowther & Nicholas Capaldi, Ashgate Research Companion to Corporate Social Responsibility, Chapter 15, pp 287-303.

JOURNAL AND OTHER ARTICLES

Schemenner, R.W., Huber, J.C. and Cook, R.L. (1987), "Geographic Differences and the Location of New Manufacturing Facilities," Journal of Urban Economics, Vol. 21, No. 1, pp. 83-104.

CONFERENCE PAPERS

• Garg, Sambhav (2011): "Business Ethics" Paper presented at the Annual International Conference for the All India Management Association, New Delhi, India, 19–23

UNPUBLISHED DISSERTATIONS

• Kumar S. (2011): "Customer Value: A Comparative Study of Rural and Urban Customers," Thesis, Kurukshetra University, Kurukshetra.

ONLINE RESOURCES

• Always indicate the date that the source was accessed, as online resources are frequently updated or removed.

WEBSITES

Garg, Bhavet (2011): Towards a New Gas Policy, Political Weekly, Viewed on January 01, 2012 http://epw.in/user/viewabstract.jsp

QUANTIFYING THE EXPLAINABILITY OF MACHINE LEARNING MODELS: METRICS AND BENCHMARKS

K.ROOPA ASST. PROFESSOR MADANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE ANGALLU

ABSTRACT

With the increasing adoption of machine learning models in domains of high societal impact, ensuring their explainability has become paramount. This study delves into the intricate balance between model performance and interpretability, shedding light on the challenges in quantifying explainability. We highlight the multifaceted nature of interpretability, ranging from the subjectivity of explanations to the diverse needs across domains. Employing a range of datasets and model architectures, we evaluate various techniques aiming to enhance model transparency. Our findings underscore the pressing need for holistic explainability frameworks, domain-adapted solutions, and community-driven benchmarks. As we integrate AI deeper into decision-making processes, this research emphasizes that the path forward is not only about achieving high model accuracy but also about fostering trust and understanding. The goal is clear: a future where AI systems are both powerful and transparent, ensuring the benefits are accessible, comprehensible, and equitable for all.

KEYWORDS

explainability, machine learning models, interpretability metrics, trustworthy ai, model benchmarks, transparency, feature importance, local and global explanations.

JEL CODE

031

INTRODUCTION

n recent years, machine learning (ML) has witnessed unprecedented advancements, leading to transformative applications across myriad sectors-from healthcare diagnostics to financial forecasting. These powerful algorithms, capable of processing vast amounts of data and detecting intricate patterns, hold the potential to significantly impact decision-making processes. However, alongside their burgeoning capabilities, a fundamental concern has arisen: the "black-box" nature of many state-of-the-art models.

The term "black-box" alludes to complex models, like deep neural networks or certain ensemble methods, which, despite their high predictive accuracy, often lack transparent reasoning behind their predictions. This opacity can be particularly concerning in high-stakes environments, such as medical diagnoses or credit approvals, where the consequences of decisions are profound, and stakeholders demand clarity.

But, what does it mean for a model to be "explainable"? And how can we quantitatively measure such a qualitative property? This research dives deep into these questions, exploring the nuances of model explainability, the metrics to gauge it, and the benchmarks to test these metrics. As we stand at the crossroads of an Al-driven era, it's imperative to ensure that these tools are not just performant, but also interpretable, trustworthy, and accountable to their human users.

In the following sections, we will unpack the challenges of quantifying explainability, investigate various metrics developed to measure it, and evaluate these metrics against standardized benchmarks. Through this exploration, we aim to offer a comprehensive perspective on where the field currently stands and the path it needs to traverse to ensure a harmonious future where humans and machines collaboratively drive decisions.

OBJECTIVES OF THE STUDY

- To devise robust quantitative metrics for evaluating the explainability of machine learning models. These metrics should encompass various aspects of ex-1. plainability, such as fidelity, comprehensibility, stability, and consistency, to provide a comprehensive assessment.
- To establish a standardized benchmarking framework that enables consistent evaluation of explainability techniques across different model architectures, 2 datasets, and application domains.

RESEARCH METHODOLOGY

The study is based on both primary and secondary data collected through various journals, magazines and websites.

LITERATURE REVIEW

Early work by Doshi-Velez and Kim (2017) introduced the concept of interpretability and emphasized the need for a rigorous science of interpretable machine learning.

Ribeiro et al. (2016) proposed the LIME framework for explaining the predictions of any classifier, providing a model-agnostic approach to local interpretability. Lundberg and Lee (2017) developed SHAP (SHapley Additive exPlanations), a unified approach to interpreting model predictions based on Shapley values, which has gained widespread adoption in the field.

THE NEED FOR EXPLAINABILITY

As machine learning (ML) models become more sophisticated, their internal mechanisms often become harder to interpret. These so-called "black-box" models, which include deep neural networks, ensemble methods, and others, can produce highly accurate predictions, but understanding how they arrive at these predictions remains challenging. The opacity of these models has given rise to a critical demand for explainability in the ML community.

CRITICAL REAL-WORLD IMPLICATIONS

HEALTHCARE

In healthcare, where ML models assist in diagnosis, treatment recommendations, and prognosis predictions, understanding the rationale behind a model's decision is paramount. Wrong predictions without explanations can be life-threatening.

FINANCE

In the financial sector, ML models are used for credit scoring, fraud detection, and investment strategies. Providing reasons for a credit denial or recognizing why a particular transaction was flagged as fraudulent is not just a regulatory requirement but also central to customer trust.

LEGAL AND CRIMINAL JUSTICE

ML models are increasingly being used for risk assessment in criminal justice settings. The decisions made here can affect individuals' liberties, making it essential to ensure transparency and avoid biases.

INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT & MANAGEMENT

A Monthly Double-Blind Peer Reviewed (Refereed/Juried) Open Access International e-Journal - Included in the International Serial Directories

ETHICAL CONSIDERATIONS

Accountability: If a model's decision leads to a negative outcome, there needs to be a clear understanding of how that decision was made to hold the relevant parties accountable.

Bias and Fairness: Without explainability, biases hidden within models—often arising from biased training data—can go unnoticed and uncorrected. This can perpetuate systemic injustices and inequalities.

Trust: For end-users, especially domain experts like doctors or financial analysts, to trust an ML model, they need to understand its decision-making process. Trust is crucial for the broader adoption of ML solutions.

REGULATORY MANDATES

Many sectors have regulations that require decisions made by algorithms to be explainable:

General Data Protection Regulation (GDPR): The European Union's GDPR has provisions that can be interpreted as giving individuals the right to an explanation when subjected to automated decisions.

Financial Services: Regulations often require that customers be given reasons for decisions, such as loan denials.

CHALLENGES IN ACHIEVING EXPLAINABILITY

- Trade-off with Model Complexity: Simpler models are often more interpretable but may not achieve the same accuracy as more complex models.
- Subjectivity: What's considered "explainable" can be subjective and vary among users. A technical explanation may suffice for a data scientist, while a domain
 expert might need contextual reasoning.

EXPLAINABILITY Vs. ACCURACY TRADE-OFF

One of the long-standing tensions in machine learning revolves around the trade-off between explainability and accuracy. As models grow more complex, they often yield better accuracy, but their interpretability diminishes, turning them into "black-box" systems.

THE RISE OF COMPLEX MODELS

With the advent of deep learning and ensemble methods, the machine learning community has achieved unprecedented accuracies in tasks ranging from image recognition to natural language processing. These models, however:

- Incorporate Millions of Parameters: Deep neural networks, especially, can have millions of tunable parameters, making it difficult to discern how any specific
 input influences the output.
- Non-linearities: Many modern models employ complex non-linear functions that challenge straightforward interpretation.

THE ALLURE OF SIMPLICITY

On the flip side, simpler models like linear regression or decision trees, while more interpretable, might not capture intricate patterns in the data. They offer:

- Clear Mechanisms: The decision boundaries or logic are often transparent and can be visually represented.
- Feature Importance: These models can usually provide a clear ranking of feature importance.

REAL-WORLD IMPLICATIONS OF THE TRADE-OFF

- Healthcare: A highly accurate model that predicts patient risk might be favored, but if doctors can't understand its predictions, they might be hesitant to rely
 on it.
- Finance: Investment models might yield great returns, but if they're not interpretable, they can't be audited or easily adjusted by human experts.

STRIKING A BALANCE

- Model-Agnostic Explanations: Techniques like LIME or SHAP aim to offer explanations for any model by approximating its decisions using simpler, interpretable models.
- Regularization for Simplicity: Some methods introduce regularization to make models like neural networks sparser, and thus more interpretable, without significant accuracy losses.
- Attention Mechanisms: In deep learning, attention mechanisms can highlight parts of the input data (like words in a sentence) that were pivotal in making
 a decision.

METRICS FOR QUANTIFYING EXPLAINABILITY

Explainability in machine learning refers to the degree to which a human can understand the cause of a decision made by a model. This is especially important in applications where understanding model behavior is crucial for trust, compliance, or debugging. Several metrics have been proposed to measure and benchmark the explainability of models.

FEATURE IMPORTANCE METRICS

These metrics quantify the importance of input features in determining the predictions:

- Permutation Importance: Evaluates the change in model performance (e.g., accuracy) when the values of a specific feature are randomly shuffled.
- SHAP (SHapley Additive exPlanations): Based on cooperative game theory, it provides a unified measure of feature importance by averaging all possible combinations of features.

MODEL FIDELITY METRICS

These metrics evaluate how well a simpler, interpretable model can approximate the predictions of a complex model:

 LIME (Local Interpretable Model-agnostic Explanations): Fits a simpler model (like a linear model) to the predictions of a complex model but only in the locality of a specific instance.

VISUAL INTERPRETABILITY METRICS

Visualization tools and metrics that provide insights into model behavior:

- Saliency Maps: In deep learning, these maps highlight regions in input data (like an image) that were most influential in a model's decision.
- Activation Maximization: Visualizes the input that would maximally activate a particular neuron in a neural network.

TEXT-BASED EXPLANATIONS

Metrics evaluating the quality and understandability of textual explanations associated with model predictions:

INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT & MANAGEMENT 7

A Monthly Double-Blind Peer Reviewed (Refereed/Juried) Open Access International e-Journal - Included in the International Serial Directories

VOLUME NO. 13 (2023), ISSUE NO. 8 (AUGUST)

- **Counterfactual Explanations:** Describes an instance by highlighting what minimal changes would need to be made for the model to change its prediction.
- Influence Functions: Identify training instances that most influenced a particular prediction.

USER STUDIES

While not a direct metric, gathering feedback from end-users or domain experts provides qualitative insights into a model's explainability:

- Comprehension Metrics: Measures based on users' ability to understand, predict, or trust model predictions after seeing explanations.
- Satisfaction Ratings: User feedback on the quality, usefulness, or trustworthiness of provided explanations.

AGGREGATED INTERPRETABILITY METRICS

Some metrics aim to provide a holistic view of explainability by aggregating multiple dimensions:

• Model Complexity vs. Performance Plots: Graphs that plot a model's performance against its complexity, highlighting the trade-off between accuracy and interpretability.

TECHNIQUES FOR ENHANCING EXPLAINABILITY

Understanding the logic and reasoning behind a machine learning model's prediction is crucial for user trust, regulatory compliance, and system debugging. Several techniques have been proposed to provide or improve this interpretability.

MODEL-SPECIFIC TECHNIQUES

These are techniques that are tailored for specific types of models:

- Linear Models Coefficients: For linear regression and logistic regression, the coefficients of the model can be directly interpreted as the importance of each feature.
- Decision Trees Visualization: Decision trees are inherently interpretable as they make hierarchical decisions based on feature values. They can be visualized to understand the decision-making process.
- Attention Mechanisms in Neural Networks: In deep learning, especially in models like Transformers, attention weights can provide insights into which parts
 of the input (e.g., words in a sentence) were pivotal in making a decision.

MODEL-AGNOSTIC TECHNIQUES

Techniques that can be applied regardless of the model's internal workings:

- LIME (Local Interpretable Model-agnostic Explanations): LIME approximates a complex model using a simpler, interpretable model (like linear regression) but only in the locality of a specific instance. It then provides explanations based on this simpler model.
- SHAP (SHapley Additive exPlanations): Based on game theory, SHAP values give each feature an importance score for a particular prediction.
- Feature Importance via Permutation: By shuffling one feature at a time and observing the deterioration in model performance, the importance of each feature can be gauged.
- Counterfactual Explanations: These provide insights by describing what minimal changes to the input are needed to change the model's prediction.

VISUALIZATION TECHNIQUES

- Saliency Maps: For neural networks, especially in image tasks, saliency maps highlight regions in the input that were most influential in the model's decision.
 Activation Maximization: Visualizes the input that would maximize the activation of a particular neuron, helping in understanding what features that neuron
- Partial Dependence Plots: These plots show the relationship between a target response and a set of features, detailing how predictions change as feature values change.

TECHNIQUES FOR TEXT DATA

Word Embedding Projections: Techniques like t-SNE or PCA can be used to visualize high-dimensional word embeddings in 2D or 3D space, offering insights into semantic relationships.

• Topic Modeling: Algorithms like Latent Dirichlet Allocation (LDA) can extract topics from large volumes of text, offering a high-level view of the text's themes.

POST-HOC TECHNIQUES

• Model Distillation: This involves training a simpler, interpretable model (e.g., a decision tree) to mimic a complex model. The simpler model serves as a proxy for understanding the complex model's decisions.

BENCHMARKS FOR MODEL EXPLAINABILITY

As the need for explainability in machine learning grows, so does the demand for standardized benchmarks to evaluate and compare various explainability techniques. Benchmarks offer a consistent framework for assessment, facilitating the development of more effective and universally applicable explainability methods.

DATA BENCHMARKS

Several datasets are popularly used to evaluate explainability techniques:

- Tabular Datasets: Datasets like UCI's Adult Income or Breast Cancer datasets have been used to evaluate explanations for classical machine learning models.
- Image Datasets: Datasets such as ImageNet or CIFAR-10/100 are often used to test the explainability of convolutional neural networks, especially with techniques like saliency maps.
- Text Datasets: For NLP models, datasets like IMDb reviews or newsgroups can be used in conjunction with attention mechanisms and other interpretability tools.

EXPLAINABILITY METRICS

Benchmarks need metrics, and for explainability, some commonly proposed metrics include:

- Fidelity: Measures how well the explanation represents the model's behavior.
- Consistency: Assesses whether similar instances receive similar explanations.
- **Stability**: Determines if slight perturbations to the input lead to significant changes in explanations.
- Comprehensibility: Often evaluated using human studies to determine if the explanations are easily understood.

A Monthly Double-Blind Peer Reviewed (Refereed/Juried) Open Access International e-Journal - Included in the International Serial Directories http://ijrcm.org.in/

VOLUME NO. 13 (2023), ISSUE NO. 8 (AUGUST)

COMPARATIVE FRAMEWORKS

Frameworks that facilitate the comparison of multiple explainability techniques on standard tasks:

- Interpretable Baselines: Comparing the performance and interpretability of simpler models (e.g., linear regression, decision trees) with more complex ones.
 Model-Agnostic Explanations: Comparing techniques like LIME, SHAP, or counterfactual explanations across different model architectures to determine their
- universality.

REAL-WORLD SCENARIOS AND CASE STUDIES

Benchmarks can also comprise real-world tasks to evaluate the practical applicability and usefulness of explanations: **Medical Imaging:** Understanding which regions in a medical image led to a particular diagnosis. **Credit Decisions:** Explaining why a loan application was approved or denied.

HUMAN STUDIES

Incorporating feedback from domain experts or end-users: User Surveys: Assessing if the explanations provided by models align with human intuition or domain expertise.

Interactive Feedback: Platforms where users can interact with models, modify inputs, and see how explanations change.

CHALLENGES IN BENCHMARKING EXPLAINABILITY

Subjectivity: What's considered a "good" explanation can be subjective and vary among individuals. **Varying Needs**: An explanation sufficient for a data scientist might not be adequate for a domain expert or layperson.

CHALLENGES IN QUANTIFYING EXPLAINABILITY

As machine learning models find applications in critical domains, ensuring that these models are interpretable and explainable becomes essential. However, truly quantifying explainability is a challenging endeavor, with various complexities to consider.

SUBJECTIVITY OF INTERPRETATION

- Varying Perspectives: What one expert considers a clear explanation might be seen as convoluted or inadequate by another. There's no universal definition of what makes a "good" explanation.
- Domain Dependency: A satisfactory explanation in healthcare might differ significantly from one in finance or automotive safety. Domain expertise heavily
 influences interpretability expectations.

EXPLAINABILITY VS. ACCURACY TRADE-OFF

- Model Simplicity: While simpler models are inherently more interpretable, they might not capture intricate patterns in data as effectively as complex models.
- Complex Models: Deep learning and ensemble methods, though powerful, often act as black boxes, making interpretations challenging.

INCONSISTENCY ACROSS METHODS

- Model-Agnostic vs. Model-Specific: Different explainability techniques might produce varying explanations for the same model and data point.
- Global vs. Local Explanations: An explanation that holds for a specific instance might not generalize to the overall model behavior, and vice versa.

SCALABILITY AND COMPUTATIONAL ISSUES

- High-Dimensional Data: With data that has thousands of features, like gene expression data or high-resolution images, generating concise and meaningful explanations becomes challenging.
- Computational Overheads: Some explainability techniques, especially model-agnostic ones, can be computationally expensive, making real-time explanations difficult.

LACK OF GROUND TRUTH

- Absence of Benchmarks: Unlike accuracy or loss metrics, there's no definitive ground truth for explainability. This makes comparative evaluations challenging.
- Human Studies Limitations: While user studies can provide feedback, they are often subjective, and large-scale studies can be resource-intensive.

POTENTIAL MISLEADING INTERPRETATIONS

- Over-reliance on Explanations: There's a risk that users might place undue trust in models if explanations are provided, even if the underlying model is
 flawed.
- Simplistic Explanations: An overly simplified explanation might not capture the nuances of model decisions, potentially leading to misinterpretations.

MODEL AND DATA DIVERSITY

- Evolving Models: As ML research advances, newer model architectures emerge. Ensuring explainability techniques remain relevant and effective for these is challenging.
- Diverse Data Types: Text, images, time series, and structured data all have distinct characteristics, and a one-size-fits-all explainability solution is elusive.

CONCLUSION & FUTURE DIRECTIONS

CONCLUSION

Machine learning, with its promise of automating complex tasks and unveiling patterns hidden in vast amounts of data, has seen tremendous growth in both research and applications. However, as we integrate these models deeper into society's fabric, particularly in critical decision-making areas, the "black-box" nature of many sophisticated algorithms has raised valid concerns. The push towards explainable AI is not merely a technical challenge but an ethical imperative, ensuring that the advancements benefit all and cause no inadvertent harm.

Our exploration underscored the multifaceted challenges in quantifying explainability – from the inherent subjectivity of what constitutes a "good" explanation to the intricacies of diverse data and model architectures. However, these challenges also illuminate the path forward, highlighting areas that require focused research, interdisciplinary collaboration, and sustained dialogue with end-users.

FUTURE DIRECTIONS

Holistic Explainability Frameworks: There's a growing need for frameworks that don't just offer piecemeal explanations but provide a comprehensive understanding of models, integrating global and local explanations, textual summaries, and visualizations.

INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT & MANAGEMENT

A Monthly Double-Blind Peer Reviewed (Refereed/Juried) Open Access International e-Journal - Included in the International Serial Directories

VOLUME NO. 13 (2023), ISSUE NO. 8 (AUGUST)

- Ethics of Explainability: As the field evolves, ethical guidelines for creating and presenting explanations will become paramount, ensuring that they are not
 misleading and genuinely promote understanding.
- Interactive Explainability Platforms: Future solutions might not be static explanations but interactive platforms where users can query models, tweak inputs, and visualize changes in real-time.
- Explainability in Emerging Model Architectures: With continual advancements in machine learning, ensuring that novel model architectures are interpretable will remain an ongoing challenge.
- Domain-specific Solutions: Recognizing that explainability needs vary across sectors, there will be a push towards domain-adapted explainability methods, tailor-made for areas like healthcare, finance, or autonomous systems.
- Community-driven Benchmarks: The development of widely accepted, standardized benchmarks for evaluating explainability will be pivotal in driving research and ensuring consistent evaluation.
- Educating Stakeholders: Beyond just developing explainability techniques, there's a need to educate stakeholders, from developers to end-users, on the importance, nuances, and utilization of these methods.

REFERENCES

- 1. Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608.
- 2. Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
- Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., & Elhadad, N. (2015, August). Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1721-1730).
- 4. Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626).
- 5. Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B. (2017). What do we need to build explainable AI systems for the medical domain?. arXiv preprint arXiv:1712.09923.
- 6. Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE access, 6, 52138-52160.
- 7. Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2018, October). Explaining explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th International Conference on data science and advanced analytics (DSAA) (pp. 80-89). IEEE.
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). "Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144).

REQUEST FOR FEEDBACK

Dear Readers

At the very outset, International Journal of Research in Commerce, IT & Management (IJRCM) acknowledges & appreciates your efforts in showing interest in our present issue under your kind perusal.

I would like to request you to supply your critical comments and suggestions about the material published in this issue, as well as on the journal as a whole, on our e-mail <u>infoijrcm@gmail.com</u> for further improvements in the interest of research.

If you have any queries, please feel free to contact us on our e-mail infoijrcm@gmail.com.

I am sure that your feedback and deliberations would make future issues better – a result of our joint effort.

Looking forward to an appropriate consideration.

With sincere regards

Thanking you profoundly

Academically yours

Sd/-Co-ordinator

DISCLAIMER

The information and opinions presented in the Journal reflect the views of the authors and not of the Journal or its Editorial Board or the Publishers/Editors. Publication does not constitute endorsement by the journal. Neither the Journal nor its publishers/Editors/Editorial Board nor anyone else involved in creating, producing or delivering the journal or the materials contained therein, assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information provided in the journal, nor shall they be liable for any direct, indirect, incidental, special, consequential or punitive damages arising out of the use of information/material contained in the journal. The journal, neither its publishers/Editors/ Editorial Board, nor any other party involved in the preparation of material contained in the journal represents or warrants that the information contained herein is in every respect accurate or complete, and they are not responsible for any errors or omissions or for the results obtained from the use of such material. Readers are encouraged to confirm the information contained herein with other sources. The responsibility of the contents and the opinions expressed in this journal are exclusively of the author (s) concerned.

ABOUT THE JOURNAL

In this age of Commerce, Economics, Computer, I.T. & Management and cut throat competition, a group of intellectuals felt the need to have some platform, where young and budding managers and academicians could express their views and discuss the problems among their peers. This journal was conceived with this noble intention in view. This journal has been introduced to give an opportunity for expressing refined and innovative ideas in this field. It is our humble endeavour to provide a springboard to the upcoming specialists and give a chance to know about the latest in the sphere of research and knowledge. We have taken a small step and we hope that with the active cooperation of like-minded scholars, we shall be able to serve the society with our humble efforts.

Our Other Fournals

IN. OF RESER

MATHOMAL JOURNAL COMMANDER & MI

INTERNATIONAL JOURNAL OF RESEARCH IN COMMERCE, IT & MANAGEMENT A Monthly Double-Blind Peer Reviewed (Refereed/Juried) Open Access International e-Journal - Included in the International Serial Directories http://ijrcm.org.in/